Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10628061 | Composites Part A: Applied Science and Manufacturing | 2005 | 9 Pages |
Abstract
Manufacturing processes for laminated composites often produce parts whose dimensions do not match the mold from which they were made. This distortion is commonly referred to as 'spring-in'. The amount of spring-in can depend on many factors including the manufacturing process (cure temperature, resin bleed, and applied pressure), the part (geometry, material, thickness, cure shrinkage, thermal expansion and layup sequence), and the tool (surface, thickness and thermal expansion). Much of the current work devoted to spring-in relies on extensive resin characterization. While this approach has been reasonably successful, it does little to assist the designer using material systems that have not been fully characterized (which is not always possible or feasible). This study considers the ability of a linear elastic finite element model to describe and quantify many of the factors contributing to spring-in. The aim of this study is to show that spring-in can be accurately predicted without a complete resin characterization. Numerical predictions based on relatively simple mechanical tests were observed to compare favorably with experimental measurements. Spring-in was dominated by thickness shrinkage, which contributed approximately 3/4 of the measured distortion. The mold stretching contribution diminished with thickness and was negligible for parts thicker than 2.5Â mm (0.1Â in.). While the material system at hand did not exhibit a fiber volume fraction gradient, its effects were included in the formulation of the model. For materials that have reported a gradient, it was found to account for approximately 10% of the part spring-in.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Satish K. Bapanapalli, Lloyd V. Smith,