Article ID Journal Published Year Pages File Type
10629384 Journal of the European Ceramic Society 2015 12 Pages PDF
Abstract
In this work, geopolymer foams were obtained by reacting metakaolin with phosphoric acid and using natural calcite/dolomite as foaming agent. Total porosity and thermal conductivity were ca. 70% and 0.083 ± 0.008 W/mK, respectively. Rietveld refinements, using both ex- and in situ XRPD data, were performed in order to elucidate the phase stability of the formed binder up to 1200 °C. The results showed that the amorphous matrix partially crystallized in tridymite and cristobalite type structures of AlPO4-SiO2 solid solutions at about 700 °C. At 1000 °C, 3:2 mullite started to crystallize, possibly from unreacted metakaolinite, resulting in co-crystallization of SiO2 cristobalite. At the same time, the amount of tridymite-type structure decreased, possibly due to selective phase transformation of AlPO4 tridymite to cristobalite, leaving behind the SiO2 isostructure. The geopolymer paste composition allows to tailor the mullite content in the refractory foam.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,