Article ID Journal Published Year Pages File Type
10629556 Journal of the European Ceramic Society 2015 8 Pages PDF
Abstract
Silicon carbide (SiC) is being used increasingly as a room temperature structural material in environments where moisture cannot always be excluded. Unfortunately, there have been almost no reports on slow crack growth (SCG) in SiC at room temperature. To address this gap, SCG in SiC was studied using constant stress rate and double torsion tests in water. SiC based materials were produced with a wide range of grain boundary chemistries and microstructures, which may affect their slow crack growth behaviour. To clarify the role of chemistry and microstructure respectively, solid state (SS) sintering with carbon and boron along with liquid phase (LP) sintering using oxides additives were used to produce materials with fine and coarse grains. The LP-SiC was three times more sensitive to SCG than SS-SiC materials. Moreover, the larger grained material with a higher toughness was less sensitive to SCG than the materials with fine grains.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,