Article ID Journal Published Year Pages File Type
10629581 Journal of the European Ceramic Society 2015 12 Pages PDF
Abstract
We have used Hertzian and Vickers indentation to investigate contact damage in sintered SiC ceramics, one consisting of uniform, fine-grains and the other a coarse, elongated grain structure. Cracking-resistance measured by Hertzian indentation, showed no discernible difference, nor did the Vickers hardness. However, numerical analysis of the Vickers indentation size effect, performed using the proportional specimen resistance model, indicates 77.3% greater surface energy, mostly realised through cracking, is experienced by heterogeneous SiC per unit area of indentation impression. This is typified by an observable increase in the number of radial cracks generated around Vickers impressions, which has been found to artificially increase the KIC determined by Vickers indentation fracture. Quantitative measurements of pre-existing flaws by Hertzian indentation show that heterogeneous SiC retains a higher density of larger flaws. Relationships between the differences in cracking around Vickers indents and the pre-existing flaw populations of these two SiC ceramics are discussed.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,