Article ID Journal Published Year Pages File Type
10629660 Journal of the European Ceramic Society 2012 7 Pages PDF
Abstract
Nanocrystalline yttrium oxide, Y2O3 with 110 nm average grain size was plastically deformed between 800 °C and 1100 °C by compression at different strain rates and by creep at different stresses. The onset temperature for plasticity was at 1000 °C. Yield stress was strongly temperature dependent and the strain hardening disappeared at 1100 °C. The polyhedral and equiaxed grain morphology were preserved in the deformed specimens. The experimentally measured and theoretically calculated stress exponent n = 2 was consistent with the plastic deformation by grain boundary sliding. Decrease in the grain size was consistent with decrease in the brittle to ductile transition temperature.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,