Article ID Journal Published Year Pages File Type
10629807 Journal of the European Ceramic Society 2005 14 Pages PDF
Abstract
Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,