Article ID Journal Published Year Pages File Type
10632092 Materials Research Bulletin 2005 8 Pages PDF
Abstract
Ba2(Zn0.5Ti0.5X)O6 compounds from the general ABO3 perovskite family were synthesized by the classical solid-state route for X = Nb and Ta with various A/B ratios (1.005, 1 and 0.995). After the calcination step at 1100 °C, both compounds (X = Nb and Ta) contain mainly the cubic disordered 'Ba2(Zn0.5Ti0.5X)O6' phase but traces of BaTiO3 and secondary phases are often detectable. Nevertheless, after the sintering stage at higher temperature (from 1300 to 1500 °C) and for all A/B ratios investigated, Ti enters into the cubic perovskite structure, resulting in the formation of a unique 'Ba2(Zn0.5Ti0.5X)O6' phase. Attractive dielectric properties have been measured on the tantalum-based compound for A/B = 0.995 (Q ∼2000 at 7.4 GHz and ɛ = 39.6) as well as on the niobium-based phase for A/B = 1.005 (Q ∼2200 at 6.1 GHz and ɛ = 54.8). All these characteristics were confirmed at 1 MHz and a linear dependence of the permittivity versus temperature from −60 to 180 °C has also been evidenced for both formulations. Sinterability, dielectric properties and microstructure of such compounds are discussed with respect to the stoichiometry.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,