Article ID Journal Published Year Pages File Type
10632175 Materials Research Bulletin 2005 10 Pages PDF
Abstract
Nano-sized indium tin oxide (ITO) powders were prepared by a coprecipitation method, and the sintering characteristics in fast firing were examined. The mass of the specimen, sintering atmosphere and sintering temperature varied. Oxygen atmosphere promoted the densification in normal rate sintering, while oxygen inhibited the densification in fast firing. Fast firing severely retarded densification as the mass of the specimen and the sintering temperature increased. This was explained by differential densification, which could easily occur in conditions with a high densification rate and a high thermal gradient in the specimen, where the outer region of the specimen densifies much faster than the center. Once the highly densified outer skeleton is formed, the inside of the specimen is difficult to densify because the outer skeleton geometrically constrains densification.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,