Article ID Journal Published Year Pages File Type
10633643 Optical Materials 2005 5 Pages PDF
Abstract
As continued progress towards faster, low power consuming microelectronic devices becomes increasing difficult due to the scaling challenges of electrical interconnects, it becomes even more critical to explore alternative technologies. Tunable porous silicon photonic bandgap structures are viable building blocks for optical interconnects, which present a possible long term solution to the interconnect problem. Forming the structures on a silicon platform provides the advantage of easier integration with current semiconductor processing techniques. In this work, tuning of the optical properties is controlled by liquid crystals (LCs) that are infiltrated into the silicon matrix. Active tuning is demonstrated both out-of-plane, with one-dimensional porous silicon photonic bandgap microcavities, and in-plane, using two-dimensional porous silicon photonic bandgap structures.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,