Article ID Journal Published Year Pages File Type
10634845 Scripta Materialia 2005 4 Pages PDF
Abstract
Magnetization processes in particulate L10 FePt nanostructures are investigated by model calculations and numerical simulations. The systems considered include anisotropic nanograins embedded in non-magnetic matrix; randomly oriented nanoclusters embedded in a C matrix, and nanocomposites of FePt particles in a semi-hard matrix. The reversal mechanisms depend on both intra- and intergranular features. Quasi-coherent rotation dominates the reversal in weakly-coupled granular magnets, but interface imperfections yield a disproportionately strong coercivity reduction. Strong intergranular exchange leads to a transition to a discrete pinning regime, which is accompanied by a coercivity maximum.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,