Article ID Journal Published Year Pages File Type
10636849 Solid State Sciences 2005 7 Pages PDF
Abstract
A detailed neutron powder diffraction and calorimetric study was conducted to determine the influence of increasing Mn-substitution on the crystal and the magnetic structures of hematite, α-Fe2O3. The study was initiated to determine, if Mn substitution may be responsible for unusual ferromagnetic properties of natural hematite samples from the Kalahari Mn field, South Africa. Natural as well as synthetic Mn-bearing hematite samples with the compositional range Fe2−xMnxO3 (x=0 to 0.176) were examined. Calorimetric measurements were performed to determine the Néel TN and the Morin TM temperature transitions. All studied hematite samples, irrespective of chemical composition, display weak ferromagnetism at 295 K and coexistence of weak ferromagnetic and antiferromagnetic phases at 10 K. A slight decrease of the total magnetic moment and TM but a drastic decrease of TN can be attributed to increasing Mn-substitution. The results illustrate that Mn substitution may contribute but cannot be the sole reason for the unusual magnetic properties of natural hematite samples.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,