Article ID Journal Published Year Pages File Type
10637797 Cryogenics 2005 7 Pages PDF
Abstract
The basic design principles of current leads for superconducting magnets are well established but HTS materials and conduction cooled systems call for new numerical methods. In this paper the design of current leads was formulated as an optimization problem. Both time integration and finite differencing were examined as possible ways to compute the temperature distribution inside the leads. Three examples about optimization of conduction cooled as well as gas cooled systems are presented. First, the design of tubular normal conducting gas cooled current leads was studied. Second, normal conducting leads cooled with a two-stage cryocooler were examined. Third, the optimization was applied to current leads consisting of HTS tapes at the low temperature end of a normal conducting bar. The study took into account the magnetic field and temperature dependent voltage-current characteristics of the anisotropic Bi-2223 material. The results are compared with traditional analytical ones and the numerical optimization is shown to be an efficient design tool for both normal conducting and HTS current leads.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,