Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10638294 | Materials Chemistry and Physics | 2005 | 9 Pages |
Abstract
This paper discusses some advances in research conducted on SnO2-based electroceramics. The addition of different dopants, as well as several thermal treatments in oxidizing and inert atmospheres, were found to influence the microstructure and electrical properties of SnO2-based varistor ceramics. Measurements taken by impedance spectroscopy revealed variations in the height and width of the potential barrier resulting from the atmosphere in which thermal treatments were performed. High nonlinear coefficient values, which are characteristic of high-voltage and commercial ZnO varistors, were obtained for these SnO2-based systems. All the systems developed here have potentially promising varistor applications.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
M.R. Cássia-Santos, V.C. Sousa, M.M. Oliveira, F.R. Sensato, W.K. Bacelar, J.W. Gomes, E. Longo, E.R. Leite, J.A. Varela,