Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10639855 | Materials Science and Engineering: B | 2013 | 6 Pages |
Abstract
Nanometer Y-substituted nickel hydroxide was prepared by supersonic co-precipitation method with Na2CO3 as a buffer and NiCl2 as a nickel source. The crystal structure, morphology, particle size distribution and electrochemical performance affected by the buffer (Na2CO3) content and Ni2+ concentration are characterized. The results indicate most of the samples are co-existence with α and β phases and the proportion of α-Ni(OH)2 increases with the increase of Na2CO3, but decreases with the increase of Ni2+ concentration. The primary particles of samples are nanometer particles and the shape of primary particles transform from acicular to quasi-spherical with increasing Na2CO3 content, but converse process for the increase of Ni2+ concentration. The average particle size decreases initially and then increases. Complex electrodes were prepared by mixing 8 wt.% nickel hydroxides with commercial micro-size spherical nickel. The discharge capacities of samples increase initially and then decrease with increasing Na2CO3 content or decreasing Ni2+ concentration. When Na2CO3 content is 0.08 g and Ni2+ concentration is 0.2 mol/L, the sample has better electrochemical performance, such as larger discharge capacity (316.3 mAh/g at 0.2 C rate), lower charge voltage and higher discharge plateau, than those of other samples.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
H.Z. Zheng, Y.J. Zhu, X.R. Lin, Y.H. Zhuang, R.D. Zhao, Y.L. Liu, S.J. Zhang,