Article ID Journal Published Year Pages File Type
10640145 Materials Science and Engineering: B 2005 14 Pages PDF
Abstract
There is an increasing need for small-dimension, ultra-lightweight, portable power supplies due to the miniaturization of consumer electronic devices. Rechargeable thin film lithium-ion batteries have the potential to fulfill the growing demands for micro-energy storage devices. However, rechargeable battery technology and fabrication processes have not kept pace with the advances made in device technology. Economical fabrication methods lending excellent microstructural and compositional control in the thin film battery electrodes have yet to be fully developed. In this study, spin coating has been used to demonstrate the flexibility of the approach to produce both anode (SnO2) and cathode (LiCoO2) thin films. Results on the microstructure, crystal structure, and electrochemical properties of the thin film electrodes are described and discussed.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,