Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10642304 | Physica E: Low-dimensional Systems and Nanostructures | 2005 | 8 Pages |
Abstract
Preparation conditions of single-phase SiC nanotubes and C-SiC coaxial nanotubes were investigated. The characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes were carried out. The SiC nanowires, which were made of the catenated SiC grains of 50-200 nm in diameter, were obtained in carbon nanotubes reacted at 1450 °C. The only C-SiC coaxial nanotubes were formed at 1300 °C. A few single-phase SiC nantoubes were synthesized at 1200 °C for 100 h. More than half number of nanotubes reacted at 1200 °C for 100 h were altered to single-phase SiC nantoubes by heat treatment of 600 °C for 1 h in air since the remained carbon was removed. The energy dispersive X-ray spectroscopy analysis revealed that the atomic ratio of Si to C in single-phase SiC nanotubes was almost 1; these single-phase SiC nanotubes consisted of near-stoichiometric SiC grains.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Tomitsugu Taguchi, Naoki Igawa, Hiroyuki Yamamoto, Shin-ichi Shamoto, Shiro Jitsukawa,