Article ID Journal Published Year Pages File Type
10643734 Superlattices and Microstructures 2005 9 Pages PDF
Abstract
Dark currents in a biased quantum well fabricated using Al0.27Ga0.73As/GaAs heterojunctions are calculated at two different temperatures including thermionic field emission currents arising from the electron scattering with phonons and plasmons. In the electron-phonon scattering process several modes due to heterojunctions such as the confined, half-space and interface longitudinal optic phonons are taken into account. It is found that the confined phonon scattering process results in maximum currents compared to those obtained in the half-space and interface scattering modes. However, the magnitude of the currents that resulted from the electron-plasmon scattering process is found to be higher than that found from the electron scattering with confined phonons. Comparison of the calculated dark currents with experiments shows that the thermionic emission currents due to phonon and plasmon assisted processes are essential to get better agreement with experiments than the previously employed bulk phonon scattering process.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,