Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10644324 | Calphad | 2005 | 49 Pages |
Abstract
Predicting and characterizing the crystal structure of materials is a key problem in materials research and development. We report the results of ab initio LDA/GGA computations for the following systems: AgAu, AgCd, AgMg, AgMoâ, AgNa, AgNbâ, AgPd, AgRhâ, AgRuâ, AgTcâ, AgTi, AgY, AgZr, AlSc, AuCd, AuMoâ, AuNb, AuPd, AuPtâ, AuRhâ, AuRuâ, AuSc, AuTcâ, AuTi, AuY, AuZr, CdMoâ, CdNbâ, CdPd, CdPt, CdRh, CdRuâ, CdTcâ, CdTi, CdY, CdZr, CrMgâ, MoNb, MoPd, MoPt, MoRh, MoRu, MoTcâ, MoTi, MoY â, MoZr, NbPd, NbPt, NbRh, NbRu, NbTc, NbY â, NbZrâ, PdPt, PdRhâ, PdRuâ, PdTc, PdTi, PdY, PdZr, PtRh, PtRu, PtY, PtTc, PtTi, PtZr, RhRu, RhTc, RhTi, RhY, RhZr, RuTi, RuTc, RuY, RuZr, TcTi, TcY, TcZr, TiZrâ, Y Zrâ (â= systems in which the ab initio method predicts that no compounds are stable). A detailed comparison to experimental data confirms the high accuracy with which ab initio methods can predict ground states.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Stefano Curtarolo, Dane Morgan, Gerbrand Ceder,