Article ID Journal Published Year Pages File Type
1064445 Spatial and Spatio-temporal Epidemiology 2011 11 Pages PDF
Abstract

Disease mapping is the area of epidemiology that estimates the spatial pattern in disease risk over an extended geographical region, so that areas with elevated risk levels can be identified. Bayesian hierarchical models are typically used in this context, which represent the risk surface using a combination of available covariate data and a set of spatial random effects. These random effects are included to model any overdispersion or spatial correlation in the disease data, that has not been accounted for by the available covariate information. The random effects are typically modelled by a conditional autoregressive (CAR) prior distribution, and a number of alternative specifications have been proposed. This paper critiques four of the most common models within the CAR class, and assesses their appropriateness via a simulation study. The four models are then applied to a new study mapping cancer incidence in Greater Glasgow, Scotland, between 2001 and 2005.

Related Topics
Health Sciences Medicine and Dentistry Public Health and Health Policy
Authors
,