Article ID Journal Published Year Pages File Type
10644562 Computational Materials Science 2005 7 Pages PDF
Abstract
In this study, the prediction of flow stress in 304 stainless steel using artificial neural networks (ANN) has been investigated. Experimental data earlier deduced-by [S. Venugopal et al., Optimization of cold and warm workability in 304 stainless steel using instability maps, Metall. Trans. A 27A (1996) 126-199]-were collected to obtain training and test data. Temperature, strain-rate and strain were used as input layer, while the output was flow stress. The back propagation learning algorithm with three different variants and logistic sigmoid transfer function were used in the network. The results of this investigation shows that the R2 values for the test and training data set are about 0.9791 and 0.9871, respectively, and the smallest mean absolute error is 14.235. With these results, we believe that the ANN can be used for prediction of flow stress as an accurate method in 304 stainless steel.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , ,