Article ID Journal Published Year Pages File Type
10652331 Micron 2005 7 Pages PDF
Abstract
The nucleation, growth, and coalescence of silver oxide nanoparticles have been investigated dynamically and at high spatial resolution by using the electron beam of a transmission electron microscope to stimulate and to observe the processes. Under the assumption the particles are hemispherical, the growth rate was found to be proportional to the square root of the electron irradiation time. This result suggests that the rate-limiting step is the attachment of atoms to the nanoparticles. Growth of the nanoparticles occurred by the addition of columns of atoms on {111} planes. Particle impingement resulted in interpenetration of the particles and, ultimately, the formation of a grain boundary.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,