Article ID Journal Published Year Pages File Type
10653293 Solid State Communications 2005 6 Pages PDF
Abstract
The ac electrical properties of 5-10% Fe doped polycrystalline sample have been investigated by complex impedance analysis over the frequency and temperature ranges of 1-100 kHz and 77-300 K, respectively. The average normalized change (ΔZ′/Δf)/Z0 has been deduced for these Fe doped CMR samples which shows an increasing trend with iron doping. The most pronounced effect of frequencies is at Tc, with the increase of Fe doping it is observed that not only Tc is lowered substantially but also the height of the peaks of real part of impedance (Z′) is increased which in turn decreases considerably with the increase of the ac field. An equivalent circuit model, Rg(RgbCgb), i.e. a resistor-capacitor network, has been proposed to explain the impedance results at different temperatures. The plot between τ and 1/T gives a straight line from where relaxation time (τ0) has been deduced. The correlated barrier hopping (CBH) model has been employed and the binding energy of the defect states is estimated to be between 0.39 and 0.25 eV while the minimum hoping distance varies within the range of 2.93-5.21 Å for these 5-10% Fe doped LCM samples.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,