Article ID Journal Published Year Pages File Type
10653590 Solid State Communications 2005 4 Pages PDF
Abstract
The electronic structures of ABi2Ta2O9 (A=Ca, Sr, and Ba) were calculated by using first-principles under optimized structure. As the size of A-site cation decreases from that of Ba2+ to Ca2+, the band-gap between O 2p and Ta 5d increases from 2.0 to 2.9 eV, which responses to the stronger orbital hybridizations between Ta 5d and O 2p orbits favoring improvement of the ferroelectric property, decrease in leakage current, and increase in both spontaneous polarization and Curie temperature by the structural distortion. In contrast to CaBi2Ta2O9 and SrBi2Ta2O9, the hybridization between Ba 5p orbits and O 2p orbits in BaBi2Ta2O9 has better structural stability.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,