Article ID Journal Published Year Pages File Type
10653641 Solid State Communications 2005 6 Pages PDF
Abstract
We review the methods of calculating the effective activation energy Ueff(T,B,J) for both transport measurements and magnetic decay, together with some theoretical models. Then, we apply these methods to our Hg-1223 single-phase superconductor to obtain the activation energy. Transport results give that the magnetic field and temperature dependence of the Ueff can be well described as U0B−α(1−T/Tc)m. Magnetic relaxation shows that the current density dependence of U(J) can be scaled onto a single curve, which can be considered as the activation energy at some temperature T0. The pinning mechanism in the measured temperature range does not change, and the activation energy depends separately on the three variables: T, B, and J, are responsible for the magnetic decay data scaling onto a single curve at various temperatures. As temperatures close to zero and near Tc, thermally assisted flux motion model is no longer valid since other processes dominate.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,