Article ID Journal Published Year Pages File Type
10653719 Solid State Communications 2005 5 Pages PDF
Abstract
We report on dynamics of excitons in CdxZn1−xTe/ZnTe quantum dots (QDs) and present information of excitonic transport and recombination. Due to different growth methods, samples with different QD's densities were obtained. Time-resolved measurements reveal three decay mechanisms: (i) radiative recombination of excitons in the individual QDs; (ii) thermally activated escape of excitons and (iii) escape due to tunneling (hopping). In the high QD-density samples the hopping (rHB=2700 ns−1) is two orders of magnitude more efficient than in the low QD-density samples (rHB=33 ns−1). Radiative recombination rates are similar in both types of samples, rR=1-1.3 ns−1. Due to the good radiative to nonradiative recombination ratio, the low-density QDs can be a potential source of entangled photon pairs.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , ,