Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10653834 | Solid State Communications | 2005 | 4 Pages |
Abstract
The open electron resonator, described by Duncan et al. [D.S. Duncan, M.A. Topinka, R.M. Westervelt, K.D. Maranowski, A.C. Gossard, Phys. Rev. B 64 (2001) 033310. [1]], is a mesoscopic device that has attracted considerable attention due to its remarkable behaviour (conductance oscillations), which has been explained by detailed theories based on the behaviour of electrons at the top of the Fermi sea. In this work, we study the resonator using the simple quantum quantum electrical circuit approach, developed recently by Li and Chen [Y.Q. Li, B. Chen, Phys. Rev. B 53 (1996) 4027. [2]]. With this approach, and considering a very simple capacitor-like model of the system, we are able to theoretically reproduce the observed conductance oscillations. A very remarkable feature of the simple theory developed here is the fact that the predictions depend mostly on very general facts, namely, the discrete nature of electric charge and quantum mechanics; other detailed features of the systems described enter as parameters of the system, such as capacities and inductances.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Constantino A. Utreras DÃaz, J.C. Flores, Alejandro Pérez Ponce,