Article ID Journal Published Year Pages File Type
10655888 Intermetallics 2005 11 Pages PDF
Abstract
Two-phase Fe-rich Fe-Al-Zr alloys have been prepared consisting of binary Fe-Al with a very low solubility for Zr and the ternary Laves phase Zr(Fe,Al)2 or τ1 phase Zr(Fe,Al)12. Yield stress, flexural fracture strain, and oxidation behaviour of these alloys have been studied in the temperature range between room temperature and 1200 °C. Both the Laves phase and the τ1 phase act as strengthening phases increasing significantly the yield stress as well as the brittle-to-ductile transition temperature. Alloys containing disordered A2+ ordered D03 Fe-Al show strongly increased yield stresses compared to alloys with only A2 or D03 Fe-Al. The binary and ternary alloys with about 40at.% Al and 0 or 0.8at.% Zr show the effect of vacancy hardening at low temperatures which can be eliminated by heat treatments at 400 °C. At higher Zr contents this effect is lost and instead an increase of low-temperature strength is observed after the heat treatment. The increase of the high-temperature yield strength of Fe-40at.% Al by adding Zr is much stronger than by other ternary additions such as Ti, Nb, or Mo. Tests on the oxidation resistance at temperatures up to 1200 °C indicate a detrimental effect of Zr already for additions of 0.1at.%.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , ,