Article ID Journal Published Year Pages File Type
10666424 Materials Letters 2005 4 Pages PDF
Abstract
In an attempt to synthesize amorphous silicon nitride (a-SiNx) thin films with minimal incoporation of impurities, a novel liquid precursor, tris(diethylamino)chlorosilane (TDEACS), was synthesized and proven to be an ideal candidate as a silicon and nitrogen source for depositing of high-quality a-SiNx thin films. a-SiNx films with low carbon and hydrogen contents were prepared from a TDEACS-NH3-N2 system by the LPCVD technique. The films were characterized by X-ray photoelectron spectroscopy, Auger depth profile, Fourier transform infrared spectroscopy, elastic recoil detection, and atomic force microscopy, respectively. Carbide-containing a-SiNx films were obtained at lower NH3/TDEACS ratios while all deposits were essentially stoichiometric at higher NH3/TDEACS ratios. Both carbon and hydrogen contents of the as-prepared a-SiNx films were markedly lower than of those prepared from other organic precursors previously reported. The surface topography of the as-prepared film was smooth and uniform with a root-mean-square roughness of 0.53 nm.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,