Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10668641 | Surface and Coatings Technology | 2010 | 9 Pages |
Abstract
Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800 °C and 120 min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44 nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480 ± 36 HV0.3) was higher than that of pure stainless steel coating (303 ± 33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
D. Kaewsai, A. Watcharapasorn, P. Singjai, S. Wirojanupatump, P. Niranatlumpong, S. Jiansirisomboon,