Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10670001 | Thin Solid Films | 2012 | 9 Pages |
Abstract
The influence of film thickness, type of buffer underlayer, and deposition substrate temperature on the crystal structure, microstructure, and morphology of the films of dicyanovinyl-substituted sexithiophene with four butyl-chains (DCV6T-Bu4) is investigated by means of X-ray diffraction (XRD) and X-ray reflectivity methods. A neat Si wafer or a Si wafer covered by a 15 nm buffer underlayer of fullerene C60 or 9,9-Bis[4-(N,N-bis-biphenyl-4-yl-amino)phenyl]-9H-fluorene (BPAPF) is used as a substrate. The crystalline nature and ordered molecular arrangement of the films are recorded down to 6 nm film thickness. By using substrates heated up to 90 °C during the film deposition, the size of the DCV6T-Bu4 crystallites in direction perpendicular to the film surface increases up to value of the film thickness. With increasing deposition substrate temperature or film thickness, the DCV6T-Bu4 film relaxes, resulting in reducing the interplane distances closer to the bulk values. For the films of the same thickness deposited at the same substrate temperature, the DCV6T-Bu4 film relaxes for growth on Si to BPAPF to C60. Thicker films grown at heated substrates are characterized by smaller density, higher roughness and crystallinity and better molecular ordering. A thin (up to about 6 nm-thick) intermediate layer with linear density-gradient is formed at the C60/DCV6T-Bu4 interface for the films with buffer C60 layer. The XRD pattern of the DCV6T-Bu4 powder is indexed using triclinic unit cell parameters.
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
Alexandr A. Levin, Marieta Levichkova, Dirk Hildebrandt, Marina Klisch, Andre Weiss, David Wynands, Chris Elschner, Martin Pfeiffer, Karl Leo, Moritz Riede,