Article ID Journal Published Year Pages File Type
10670024 Thin Solid Films 2012 7 Pages PDF
Abstract
The characteristics of carbon nanofibers (CNFs) grown, using direct current plasma enhanced chemical vapor deposition system reactor under various acetylene to ammonia gas ratios and different catalyst thicknesses were studied. Nickel/Chromium-glass (Ni/Cr-glass) thin film catalyst was employed for the growth of CNF. The grown CNFs were then characterized using Raman spectroscopy, field emission scanning electron microscopy and transmission electron microscopy (TEM). Raman spectroscopy showed that the Ni/Cr-glass with thickness of 15 nm and gas ratio acetylene to ammonia of 1:3 produced CNFs with the lowest ID/IG value (the relative intensity of D-band to G-band). This indicated that this catalyst thickness and gas ratio value is the optimum combination for the synthesis of CNFs under the conditions studied. TEM observation pointed out that the CNFs produced have 104 concentric walls and the residual catalyst particles were located inside the tubes of CNFs. It was also observed that structural morphology of the grown CNFs was influenced by acetylene to ammonia gas ratio and catalyst thickness.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,