Article ID Journal Published Year Pages File Type
10671031 Thin Solid Films 2005 9 Pages PDF
Abstract
It has been postulated that equiaxed nanocrystalline (<10 nm) TiN grains embedded in a thin amorphous silicon nitride (a-SiNx) phase are a prerequisite to obtain ultrahard TiN/a-SiNx coatings. The present study correlates hardness and microstructure of TiN/a-SiNx coatings with Si contents between 0 and 17 at.%. The coatings have been deposited by magnetron sputtering in industrial-scale physical vapour deposition systems. Transmission electron microscopy studies revealed that increasing the silicon content causes the TiN grain size to decrease. This is accompanied by a change in grain morphology: At Si contents lower than 1 at.% TiN grains become columnar, while at Si contents higher than 6 at.% equiaxed grains with diameters of 6 nm form. For silicon contents between 1 and 6 at.%, a transition region with nanocrystalline columnar grains exists. This nanocrystalline columnar microstructure causes maximum hardness values of more than 45 GPa for TiN/a-SiNx coatings as determined by nanoindentation. The elongated and equiaxed nanocrystalline TiN grains exhibit almost theoretical strength as dislocation-based deformation mechanisms are constrained.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,