Article ID Journal Published Year Pages File Type
10672619 Ultramicroscopy 2005 12 Pages PDF
Abstract
Molecular recognition imaging by AFM was extended to dual component protein films adsorbed on mica. AFM probes were functionalized by covalently linking polyclonal antibodies against fibrinogen. Adhesion mapping mode of AFM was used to generate both topographic images and adhesion images. The efficacy of the functionalized probes was first established by performing adhesion mapping on patterned dual component protein films formed by microcontact printing bovine serum albumin on a mica surface and then backfilling with fibrinogen. Next, adhesion mapping was done on randomly distributed two-component protein monolayers generated by sequential adsorption of submonolayer amounts of fibrinogen followed by backfilling with bovine serum albumin. The adhesion maps were used to generate binary recognition images where the specific and non-specific interactions were differentiated based on a statistically derived cut-off value. The surface coverage of fibrinogen obtained from the recognition image over the complete dual protein monolayer was similar to that obtained prior to backfilling with bovine serum albumin. The number of recognition events that were observed decreased by >80% after blocking the surface with anti-fibrinogen antibodies. This result demonstrated that the positive events in the recognition image were indeed specific antibody-fibrinogen interactions.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, ,