Article ID Journal Published Year Pages File Type
10673227 CIRP Annals - Manufacturing Technology 2009 4 Pages PDF
Abstract
The fragility of green ceramic compacts introduces considerable difficulties during green or bisque machining. This paper demonstrates methods developed to manufacture thin wall-thin floor, complex green ceramic parts to close tolerance. Hybrid finite element (FE)/mechanistic models were utilized in the development of the green machining process. An FE model was used to define cutting edge geometry and machining parameters that would reliably produce crack free parts. Mechanistic model was used to direct cutter path generation of a 5-axis milling machine having a large axial depth of cut, and to prevent edge chipping. The optimized cutter path eliminated any need for hand work before densifying the machined part.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , ,