Article ID Journal Published Year Pages File Type
10673402 CIRP Annals - Manufacturing Technology 2015 4 Pages PDF
Abstract
This paper presents a novel real-time trajectory generation algorithm for accurate high-speed cornering applications. Typically, reference tool-paths compromised of G01 lines are geometrically smoothed by means of arcs and splines. In this study, a kinematic corner smoothing algorithm approach is proposed where the cornering trajectory of the tool is generated through FIR (Finite Impulse Response) filtering of discontinuous axis velocity commands at segment junctions. Contouring errors at sharp corners are controlled analytically by optimally overlapping acceleration profiles of previous and present segments. Residual vibrations due to excitation of structural modes are avoided by tuning filter delays for all drives. The proposed method has been experimentally demonstrated to show significant improvement in the cycle time and accuracy of contouring Cartesian tool-paths.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,