Article ID Journal Published Year Pages File Type
10673726 CIRP Annals - Manufacturing Technology 2005 4 Pages PDF
Abstract
Chatter vibrations in milling, which develop due to dynamic interactions between the cutting tool and the workpiece, result in reduced productivity and part quality. Several stability models have been considered in previous publications, where mostly the stability limit in terms of axial depth of cut is emphasized for chatter free machining. In this paper, it is shown that, for the maximization of chatter free material removal rate, radial depth of cut is of equal importance. A method is proposed to determine the optimal combination of depths of cut, so that chatter free material removal rate is maximized. The application of the method is demonstrated on a pocketing example where significant reduction in the machining time is obtained using the optimal depths. The procedure can easily be integrated to a CAD/CAM system or a virtual machining environment in order to identify the optimal milling conditions.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,