Article ID Journal Published Year Pages File Type
10674518 CIRP Annals - Manufacturing Technology 2007 4 Pages PDF
Abstract
The goal of future manufacturing is to design, test and manufacture parts in a virtual environment before they are manufactured on the shop floor. This paper presents a generalized process simulation and optimization strategy for 2 1/2 axis milling operations to increase Material Removal Rate (MRR) while avoiding machining errors. The process is optimized at two stages. Optimal spindle speed, radial and axial depth of cut are recommended to process planner by considering the chatter, and spindle's torque/power limits. The cutter-part engagement conditions are extracted from CAD system by geometrically processing the NC program and part geometry. Long tool path segments are broken into smaller segments whenever the geometry varies. The spindle speed and feed fields of the NC program are automatically optimized by constraining maximum torque, power, tool deflection and chip load set by the user. The acceleration and speed limits of the machine tool feed drives are considered to prevent frequent variations of the feed unnecessarily. The optimization is experimentally verified by milling a helicopter gear box cover on a high speed, horizontal machining centre.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,