Article ID Journal Published Year Pages File Type
10678076 Applied Mathematical Modelling 2005 20 Pages PDF
Abstract
This paper is concerned with the effects of numerical schemes on the simulation of dense gas-particle two-phase flows. The first-order upwind difference, the central difference, the second-order upwind difference, the central difference plus artificial dissipation, the deferred correction, the quadratic upstream interpolation (for convective kinematics) and the monotone upstream-centered schemes for conservation laws with different flux limiters were all accomplished to simulate the multi-phase flows. It was found that numerical schemes may significantly affect the solution accuracy and numerical convergence. The monotone upstream-centered schemes for conservation laws are the best choice of all, because they can effectively suppress the non-physical oscillations with the introduction of adaptive numerical dissipation into numerical solutions.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,