Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10678464 | Applied Mathematics Letters | 2005 | 7 Pages |
Abstract
In this paper, we study the number of zeros of Abelian integrals and the monotonicity of period functions for planar quasihomogeneous Hamiltonian vector fields. The result for Abelian integrals extends the recent work of Li et al. [C. Li, W. Li, J. Llibre, Z. Zhang, Polynomial systems: A lower bound for the weakened 16th Hilbert problem, Extracta Math. 16 (3) (2001) 441-447] and Llibre and Zhang [J. Llibre, X. Zhang, On the number of limit cycles for some perturbed Hamiltonian polynomial systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2) (2001) 161-181].
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Yulin Zhao, Zhifen Zhang,