Article ID Journal Published Year Pages File Type
10680755 Acta Astronautica 2014 16 Pages PDF
Abstract
Feasibility of achieving reliable control for spacecraft formation keeping and reconfiguration without the need for thrust in either the radial or along-track direction is explored in this paper. Analysis of the linearized dynamics without along-track input indicates the presence of an uncontrollable eigenvalue at the origin. A nonlinear controller is designed to indirectly stabilize the uncontrollable modes to a stable manifold around the equilibrium. Conditions for robustness against unmatched uncertainties and disturbances are derived to establish the regions of asymptotic stabilization. The benefits of the proposed control method are also validated via numerical simulations to show that precise formation maintenance can be achieved by dealing with the issues of system nonlinearities, variations in initial conditions, and external disturbances, concurrently.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,