Article ID Journal Published Year Pages File Type
10680765 Acta Astronautica 2014 15 Pages PDF
Abstract
We conduct an in-depth study on the shape error of initially curved antennas to investigate errors that occur in the design and manufacturing processes. First, a numerical model is developed to simulate the actual surfaces. This model features a main advantage that it can predict the effects of cutting patterns on the shape error. The model is used to evaluate and optimize the design of cutting patterns. An error sensitivity analysis is performed to quantify and distinguish between the effects of error sources in manufacturing. The following sources are analyzed: errors in the elastic modulus of the membrane, pressure variations, and boundary deviations. The boundary deviation is found to be the most significant error source, and thus, boundary perturbation is recommended as an efficient error control measure. Finally, an inflatable antenna model is used to experimentally validate the numerical model. The experimental results display acceptable agreement with the numerical results. Thus, the developed numerical model and error control measure are shown to be feasible and efficient.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,