Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10680816 | Acta Astronautica | 2014 | 8 Pages |
Abstract
The combination of large membranes and light-weight deployable booms, often called a gossamer structure, has enabled innovative space missions, such as solar sailing, to become possible. Though many designs have been proposed and demonstrated, two problems remain regarding the folding patterns of the membranes. The first problem involves considering the thickness of a membrane to enable uniform and compact folding. The other involves membrane-folding patterns that allow for connecting the membrane to the booms at multiple points and deploying them together while minimizing the use of complex mechanisms. This study proposes three methods that consider the thickness, and two of them can keep the crease lines straight, in contrast to the conventional non-straight crease line solutions. In addition, this study derives one effective design to integrate a membrane with diagonal booms through the systematic classification of existing membrane folding patterns.
Related Topics
Physical Sciences and Engineering
Engineering
Aerospace Engineering
Authors
Hiraku Sakamoto, M.C. Natori, Shogo Kadonishi, Yasutaka Satou, Yoji Shirasawa, Nobukatsu Okuizumi, Osamu Mori, Hiroshi Furuya, Masaaki Okuma,