Article ID Journal Published Year Pages File Type
10682753 Energy 2010 18 Pages PDF
Abstract
In this study, an interval fixed-mix stochastic programming (IFSP) model is developed for greenhouse gas (GHG) emissions reduction management under uncertainties. In the IFSP model, methods of interval-parameter programming (IPP) and fixed-mix stochastic programming (FSP) are introduced into an integer programming framework, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a multi-stage context. Moreover, it can reflect dynamic decisions for facility-capacity expansion during the planning horizon. The developed model is applied to a case of planning GHG-emission mitigation, demonstrating that IFSP is applicable to reflecting complexities of multi-uncertainty, dynamic and interactive energy management systems, and capable of addressing the problem of GHG-emission reduction. A number of scenarios corresponding to different GHG-emission mitigation levels are examined; the results suggest that reasonable solutions have been generated. They can be used for generating plans for energy resource/electricity allocation and capacity expansion and help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,