Article ID Journal Published Year Pages File Type
106911 Science & Justice 2015 10 Pages PDF
Abstract

•We perform a simulation study to explore three likelihood-ratio (LR) computation methods.•We study the effect of the sampling variability based on assumed distribution of scores and sizes of the databases.•Our study helps to understand the behavior of the three LR computation methods.•We discuss the effect of the shapes of the score distributions, sizes of the training sets and the value of the score.

Recently, in the forensic biometric community, there is a growing interest to compute a metric called “likelihood-ratio” when a pair of biometric specimens is compared using a biometric recognition system. Generally, a biometric recognition system outputs a score and therefore a likelihood-ratio computation method is used to convert the score to a likelihood-ratio. The likelihood-ratio is the probability of the score given the hypothesis of the prosecution, Hp (the two biometric specimens arose from a same source), divided by the probability of the score given the hypothesis of the defense, Hd (the two biometric specimens arose from different sources). Given a set of training scores under Hp and a set of training scores under Hd, several methods exist to convert a score to a likelihood-ratio. In this work, we focus on the issue of sampling variability in the training sets and carry out a detailed empirical study to quantify its effect on commonly proposed likelihood-ratio computation methods. We study the effect of the sampling variability varying: 1) the shapes of the probability density functions which model the distributions of scores in the two training sets; 2) the sizes of the training sets and 3) the score for which a likelihood-ratio is computed. For this purpose, we introduce a simulation framework which can be used to study several properties of a likelihood-ratio computation method and to quantify the effect of sampling variability in the likelihood-ratio computation. It is empirically shown that the sampling variability can be considerable, particularly when the training sets are small. Furthermore, a given method of likelihood-ratio computation can behave very differently for different shapes of the probability density functions of the scores in the training sets and different scores for which likelihood-ratios are computed.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,