Article ID Journal Published Year Pages File Type
10691163 Ultrasound in Medicine & Biology 2015 12 Pages PDF
Abstract
There is increasing recognition of the influence of the flow field on the physiology of blood vessels and their development of pathology. Preliminary work is reported on a novel non-invasive technique, microbubble void imaging, which is based on ultrasound and controlled destruction of microbubble contrast agents, permitting flow visualisation and quantification of flow-induced mixing in large vessels. The generation of microbubble voids can be controlled both spatially and temporally using ultrasound parameters within the safety limits. Three different model vessel geometries-straight, planar-curved and helical-with known effects on the flow field and mixing were chosen to evaluate the technique. A high-frame-rate ultrasound system with plane wave transmission was used to acquire the contrast-enhanced ultrasound images, and an entropy measure was calculated to quantify mixing. The experimental results were cross-compared between the different geometries and with computational fluid dynamics. The results indicated that the technique is able to quantify the degree of mixing within the different configurations, with a helical geometry generating the greatest mixing, and a straight geometry, the lowest. There is a high level of concordance between the computational fluid dynamics and experimental results. The technique could also serve as a flow visualisation tool.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
, , , , , , ,