Article ID Journal Published Year Pages File Type
10691280 Ultrasound in Medicine & Biology 2015 11 Pages PDF
Abstract
Although low-intensity pulsed ultrasound (LIPUS) regulates p38 mitogen-activated protein kinase (MAPK) and promotes cartilage repair in osteoarthritis, the role of integrin-mediated p38 MAPK in the effect of LIPUS on extracellular matrix (ECM) production of normal and OA chondrocytes remains unknown. The aim of this study was to investigate whether LIPUS affects ECM production in normal and OA rabbit chondrocytes through an integrin-p38 signaling pathway. A rabbit model of OA was established by anterior cruciate ligament transection, and chondrocytes were isolated from normal or OA cartilage and cultured in vitro. Chondrocytes were treated with LIPUS and then pre-incubated with the integrin inhibitor GRGDSP or the p38 inhibitor SB203580. Expression of type II collagen, MMP-13, integrin β1, p38 and phosphorylated p38 was assessed by Western blot analysis. We found that type II collagen and integrin β1 were upregulated (p < 0.05), whereas MMP-13 was downregulated (p < 0.05) in normal and OA chondrocytes. Furthermore, phosphorylated p38 was upregulated (p < 0.05) in normal chondrocytes, but downregulated (p < 0.05) in OA chondrocytes after LIPUS stimulation. Pre-incubation of chondrocytes with the integrin inhibitor disrupted the effects of LIPUS on normal and OA chondrocytes. Pre-incubation of chrondocytes with the p38 inhibitor reduced the effects of LIPUS on normal chondrocytes, but had no impact on OA chondrocytes. Our findings suggest that the integrin-p38 MAPK signaling pathway plays an important role in LIPUS-mediated ECM production in chondrocytes.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
, , , , , , ,