Article ID Journal Published Year Pages File Type
10691500 Ultrasound in Medicine & Biology 2013 9 Pages PDF
Abstract
We applied the split-step Fourier imaging method to back-propagate the ultrasound zero-offset wavefields acquired on the bone surface to the sources of scatterers, which are the reflecting interfaces. The method required, as an input, an estimated slowness (reciprocal of half the velocity) model to map the time-dependent sonogram to the depth image, which provides the geometric properties of the interfaces. The slowness was approximated by a depth-dependent term and a first-order spatially varying perturbation. Simulated data sets were used to validate the method. The reconstructed images show proper mapping of the interfaces and the fracture, and a reasonable cortical thickness measurement with 8.3% error. The images also illustrate clearly the bone fracture healing process of a 1-mm-wide 45° inclined crack with different in-filled tissue velocities for various healing stages. Reconstruction of a fractured bone plate using data from an in vitro experiment is also presented. This study suggests that the proposed imaging method has good potential in quantification of bone fractures and monitoring of the fracture healing process.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
, , , ,