Article ID Journal Published Year Pages File Type
10691569 Ultrasound in Medicine & Biology 2014 14 Pages PDF
Abstract
The corneal endothelium sustaining the transparency of the cornea is a vulnerable cell layer. Thermal exposure during phacoemulsification is considered to be a potential cause of post-operative cell loss. Knowledge of the temperature rise and particularly of its dependence on region and system settings could deliver useful information about a potential correlation with cell damage. However, there exists a lack of understanding of the process and location of heat generation. Analytical calculations and experiments enabled the quantification of different mechanisms acting as heat sources during phacoemulsification. Heat generation caused by viscous friction was estimated using both an analytical approach and a numerical simulation. In contrast to absorption of sound and self-heating of the probe, this effect was ascertained to be the main heat source. Calorimetric measurement of the power input verified this modeling. On the basis of these results, the local temperature distribution inside a porcine eye was computed time dependently using the finite-element method. Two different amplitude settings were compared with respect to the temperature increase at the corneal endothelium. Various conclusions on the mitigation of thermal exposure during treatment can be drawn from this finite-element simulation.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
, , , ,