Article ID Journal Published Year Pages File Type
10691759 Ultrasound in Medicine & Biology 2014 10 Pages PDF
Abstract
Previous studies have reported that microbubbles bearing targeting ligands to molecular markers of angiogenesis can be successfully detected by ultrasound imaging in various animal models of solid cancer. In the present study, we sought to investigate the activity of microbubbles targeted to vascular endothelial growth factor receptor 2 (VEGFR2) in an orthotopic model of renal cell carcinoma (RCC). Microbubbles conjugated to an anti-VEGFR2 antibody (MBV) were compared with microbubbles conjugated to an isotype control antibody (MBC) or naked microbubbles (MBN). An orthotopic mouse model of human RCC was established by surgically implanting an established tumor within the renal capsule in mice. Tumor growth and blood flow were verified by B-mode and color Doppler ultrasound imaging. VEGFR2 expression within the tumor and renal parenchyma was detected by immunohistochemistry. The duration of contrast enhancement of MBV was much longer than those of MBN and MBC when assessed over 10 min. The baseline-subtracted contrast intensity within the tumor was higher for MBV than for MBC and MBN (p < 0.01). Additionally, the contrast intensity for MBV was significantly higher in the tumor region than in normal parenchyma (p < 0.01). Microbubbles targeting VEGFR2 exhibit suitable properties for imaging angiogenesis in orthotopic models of renal cell carcinoma, with potential applications in life science research and clinical medicine.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
, , , , , , ,