Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10691762 | Ultrasound in Medicine & Biology | 2014 | 9 Pages |
Abstract
Diabetic nephropathy (DN) is defined as persistent proteinuria corresponding to a urinary albumin excretion rate >300 μg/mg in the absence of other non-diabetic renal diseases. The aim of this study was to determine if ultrasound (US)-mediated microbubble (MB) destruction could increase renal interstitial capillary permeability in early DN rats. Diabetes was induced with streptozotocin. DN rats presented with mild micro-albuminuria 30 d after onset of diabetes. DN rats (N = 120) were divided into four groups that received Evans blue (EB) followed by: (i) no treatment (control group); (ii) continuous ultrasonic irradiation for 5 min (frequency = 7.00 MHz, mechanical index = 0.9, peak rarefactional pressure = 2.38 MPa: US group); (iii) microbubble injection (0.05 mL/kg: MB group); and (iv) both ultrasound and microbubble injection (US + MB group). Another 8 DN rats were subjected to ultrasound and microbubbles and then injected with EB after 24 h (recovery group). EB content, EB extravasation and E-selectin mRNA and protein expression significantly increased, and interstitial capillary walls became discontinuous in the US + MB group. Neither hemorrhage nor necrosis was observed on renal histology. Urine samples were collected 24 h post-treatment. There was no hematuria, and the urinary albumin excretion rate did not increase after ultrasound-microbubble interaction detected by urinalysis. EB content returned to the control group level after 24 h, as assessed for the recovery group. In conclusion, ultrasound-mediated microbubble destruction locally increased renal interstitial capillary permeability in DN rats, and should be considered a therapy for enhancing drug and gene delivery to the kidney in the future.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Acoustics and Ultrasonics
Authors
Yi Zhang, Chuan Ye, Yali Xu, Xuexin Dong, Jianping Li, Rong Liu, Yunhua Gao,